Onion Curve: A Space Filling Curve with Near-Optimal Clustering

نویسندگان

  • Pan Xu
  • Cuong Nguyen
  • Srikanta Tirthapura
چکیده

Space filling curves (SFCs) are widely used in the design of indexes for spatial and temporal data. Clustering is a key metric for an SFC, that measures how well the curve preserves locality in moving from higher dimensions to a single dimension. We present the onion curve, an SFC whose clustering performance is provably close to optimal for cube and nearcube shaped query sets, irrespective of the side length of the query. We show that in contrast, the clustering performance of the widely used Hilbert curve can be far from optimal, even for cube-shaped queries. Since the clustering performance of an SFC is critical to the efficiency of multi-dimensional indexes based on the SFC, the onion curve can deliver improved performance for data structures involving multi-dimensional data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Optimality of Clustering Properties of Space Filling Curves

Space filling curves have been used in the design of data structures for multidimensional data since many decades. A fundamental quality metric of a space filling curve is its “clustering number” with respect to a class of queries, which is the average number of contiguous segments on the space filling curve that a query region can be partitioned into. We present a characterization of the clust...

متن کامل

Approximation and Analytical Studies of Inter-clustering Performances of Space-Filling Curves

A discrete space-filling curve provides a linear traversal/indexing of a multi-dimensional grid space. This paper presents an application of random walk to the study of inter-clustering of space-filling curves and an analytical study on the inter-clustering performances of 2-dimensional Hilbert and z-order curve families. Two underlying measures are employed: the mean inter-cluster distance ove...

متن کامل

Analysis of the Clustering Properties of the Hilbert Space-Filling Curve

ÐSeveral schemes for the linear mapping of a multidimensional space have been proposed for various applications, such as access methods for spatio-temporal databases and image compression. In these applications, one of the most desired properties from such linear mappings is clustering, which means the locality between objects in the multidimensional space being preserved in the linear space. I...

متن کامل

Recursive tilings and space-filling curves with little fragmentation

This paper defines the Arrwwid number of a recursive tiling (or space-filling curve) as the smallest number a such that any ball Q can be covered by a tiles (or curve fragments) with total volume O(volume(Q)). Recursive tilings and space-filling curves with low Arrwwid numbers can be applied to optimize disk, memory or server access patterns when processing sets of points in Rd. This paper pres...

متن کامل

On the metric properties of discrete space-filling curves

A space-filling curve is a linear traversal of a discrete finite multidimensional space. In order for this traversal to be useful in many applications, the curve should preserve "locality". We quantify "locality" and bound the locality of multidimensional space-filling curves. Classic Hilbert space-filling curves come close to achieving optimal locality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.07399  شماره 

صفحات  -

تاریخ انتشار 2018